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Abstract

We study envy-free policy teaching. A number of agents independently explore a
common Markov decision process (MDP), but each with their own reward function
and discounting rate. A teacher wants to teach a target policy to this diverse
group of agents, by means of modifying the agents’ reward functions: providing
additional bonuses to certain actions, or penalizing them. When personalized
reward modification programs are used, an important question is how to design the
programs so that the agents think they are treated fairly. We adopt the notion of
envy-freeness (EF) from the literature on fair division to formalize this problem
and investigate several fundamental questions about the existence of EF solutions
in our setting, the computation of cost-minimizing solutions, as well as the price
of fairness (PoF), which measures the increase of cost due to the consideration of
fairness. We show that 1) an EF solution may not exist if penalties are not allowed
in the modifications, but otherwise always exists. 2) Computing a cost-minimizing
EF solution can be formulated as convex optimization and hence solved efficiently.
3) The PoF increases but at most quadratically with the geometric sum of the
discount factor, and at most linearly with the size of the MDP and the number
of agents involved; we present tight asymptotic bounds on the PoF. These results
indicate that fairness can be incorporated in multi-agent teaching without significant
computational or PoF burdens.

1 Introduction

Incentive design is an important approach to influencing rational agents’ behavior. In reinforcement
learning (RL), the incentive of an agent is expressed through their reward function [1]. One can
thus teach a desired policy to an agent by modifying their reward function, in a way that makes
the target policy optimal with respect to the modified rewards. In safe RL, for example, penalties
can be imposed on dangerous actions to prevent an agent from executing them [2]. In many cases,
personalized teaching programs are useful against heterogeneous agents, who might have very
different innate reward functions or apply different discounting rate. As a result, the agents may
find them rewarded/penalized differently for performing the same action in the same situation (see
Figure 1). Concerns of fairness arise, and we ask the question of how to design fair personalized
teaching programs so that the agents think that they are treated fairly.

To be more concrete, consider a language teaching setting modeled as an MDP. Each state of the
MDP represents the overall skill of a student (agent) and is encoded as the student’s performance
on different components such as listening, reading, speaking, and writing. Actions available to the
students are defined by the levels of effort they put into the components, and it is desired that they
always put more effort into the components that they are currently weaker at, which is also the target
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Figure 1: To teach agents to choose the action leading to state sl, an additional reward 1 is necessary
for an agent whose innate reward function is the one on the left, whereas an agent with the reward
function on the right already finds this target policy optimal, so no additional reward is needed. When
these two agents are being taught together, the agent on the right would think they are treated unfairly
as they get no bonus for following the target policy while the agent on the left gets bonus 1.

policy the teacher aims to teach. The students’ innate reward functions are defined by their interests,
which vary across the classroom: some students may be more interested in reading, some enjoy
speaking, and some are just not a fan of any of them. The teacher can assign additional credits to
incentivize the students to follow the target policy (e.g., credits that can be used to exchange snacks,
or that will be considered in the final evaluation). Similar interactions may also happen with other
types of training programs in various domains, such as sports training. They can happen both in
physical classrooms and virtual classrooms such as language educational apps (e.g., Duolingo uses a
credit system where credits can be used to unlock next learning levels). Beyond classroom teaching,
examples can also be found in principal-agent settings. For example, a company wants to outsource
a task to different contractors. Rewards or penalties are stipulated through customized contracts to
ensure that contractors comply with a desired policy when performing the task. Meanwhile, fairness
is important as a beneficial factor for long-term partnerships.

1.1 Approach and Results

Our first step is to understand what it means to be fair in the setting of policy teaching. Indeed,
in a world with growing awareness of equality and transparency, fairness has been discussed and
evaluated in a wide range of domains. Various concepts and notions of fairness have been proposed
and used [3]. We borrow the well-studied fairness notion of envy-freeness (EF) from the literature on
fair division. It is a notion that has been used for settling disputes over property divisions or deciding
how to split an apartment rent [e.g., 4, 5]. Applying EF to policy teaching, we aim to find a set of
personalized teaching programs, such that no agent would prefer to switch the program they receive
with another agent. At the same time, as a basic requirement of policy teaching, each program should
also incentivize the corresponding agent to use the target policy. Besides the basic version of EF, we
also consider two stronger variants: one allows an agent to further deviate from the target policy when
evaluating how much they would have got had they been offered another agent’s teaching program;
the other simply requires all teaching programs to be identical, which is completely fair in a sense.

We investigate several fundamental questions about EF policy teaching.

• Existence of an EF Solution. The first question is about the existence of an EF solution under the
three EF notions of interest. We show that an EF solution always exists and one can be obtained
simply by penalizing undesired actions by a sufficiently large value. Nevertheless, the reverse does
not hold true: one cannot hope to find an EF solution only by rewarding actions desired by the
target policy. We demonstrate instances that do not admit any EF solution when penalties are not
allowed even with the weakest EF notion; we also prove that this non-existence issue is resolved if
the agents have the same discount factor.

• Cost Minimization. Since reward modification can be very costly, we are also interested in finding
out an EF solution with the least cost. We consider the norm of the modification and show that
computing a cost-minimizing EF solution can be formulated as convex optimization and can hence
be solved efficiently.

• Price of Fairness. Finally, we analyze the price of fairness (PoF), a quantity that measures the
(multiplicative) increase of the cost due to consideration of fairness and is in a similar spirit of the
price of anarchy (PoA) in game theory [6]. We present tight asymptotic bounds on the PoF. The
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PoF increases at most quadratically with the geometric sum of the discount factor and linearly with
the size of the MDP in general, while it may also grow linearly with the number of agents involved
depending on the specific EF notion considered.

In summary, our results indicate that the consideration of fairness, in addition to the original goal of
policy teaching, may result in non-existence of workable solutions but the existence is guaranteed in
a fairly wide range of important settings. It does not appear to increase the computational complexity
of policy teaching, while the additional cost it incurs grows moderately with the size of the problem.
The results indicate that fairness can be incorporated in multi-agent teaching without significant
computational or PoF burdens.

1.2 Related Work

Our work lies at the intersection of policy teaching and envy-free resource allocation.

Policy Teaching Without the fairness constraints, our model can be seen as a policy teaching
problem for each individual agent in the model. A number of studies have looked at this problem [7, 8].
The problem can be computationally harder though when the target is to hit one in a set of policies
rather than a single target [9]. When the teacher is targeting a malicious policy, policy teaching can
also be interpreted as reward poisoning [10, 11, 12, 13, 14]. From a technical point of view, these two
problems are almost identical and can be solved by using the same techniques. However, conceptually,
it is less likely that one would take fairness into consideration when designing a poisoning attack.
More broadly, policy teaching can be seen as a sub-field of reward design, a broader area that studies
how to influence agents’ behaviors thought tweaking the reward function. The objectives of these
studies are not limited to inducing a target policy. A notable example is reward shaping [15, 16, 17],
which aims to accelerate an agent’s learning process through reward design. Indeed, while our focus
is on policy teaching, the same question of how to design rewards fairly can be asked with other
objectives as well. These can be potential directions for future work.

Fair Division The study of fair division dates back to the early work of Foley [18], and the formal
concept of envy-freeness appeared even earlier [19]. Research on fair division has since evolved into
a large body of work, with focuses on allocation of divisible or indivisible items [20, 21, 22, 23]. Our
work is in particular related to fair allocation of indivisible goods with subsidies [24], where external
benefits are provided to change the agents’ original incentives. The difference is that no items are
allocated in our model and our goal in addition to achieving fairness is to teach the target policy.

We note that there are also other studies on machine teaching settings involving multiple agents or
multiple teachers [25, 26, 27], though with very different models from ours. From a mechanism
design perspective, our model can also be viewed as one version of the contract design problem [28],
where a principal offers an agent a contract for performing a target policy, but might be uncertain
about the agent’s type (i.e., the original reward function). Our EF solutions correspond exactly to
truthful mechanisms that elicit the agent’s true type.

2 Preliminaries

There are n agents 1, . . . , n. Let [n] = {1, . . . , n}. Each agent i ∈ [n] faces an MDP Mi =
〈S,A,Ri, P, z, γi〉. The MDPs have the same state space S, action space A, transition function
P : S × A × S → [0, 1], and initial state distribution z. Moreover, there is a reward function
Ri : S ×A→ R and discount factor γi for each agent i ∈ [n]. Whenever agent i takes an action a in
state s, a reward Ri(s, a) is generated for this agent; meanwhile the state transitions to s′ ∈ S with
probability P (s, a, s′). We consider the setting where each agent is concerned with the (expected)
cumulative reward, i.e., the discounted sum of rewards with respect to the factor γi, obtained over
an infinite horizon. More specifically, the cumulative reward of agent i for executing a policy
π : S → ∆(A) is

ρπi = E

[ ∞∑
t=0

(γi)
t ·Ri(st, at)

∣∣∣∣∣ s0 ∼ z, π

]
,

where the expectation is taken over the trajectory (st, at)
∞
t=0 resulting from an initial state s0 sampled

from z and the agent executing π subsequently. Each agent aims to find an optimal policy, which
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maximizes ρπi , and this can usually be handled by standard planning and reinforcement learning
algorithms.

Throughout the paper, we consider the setting where the agents operate independently in separate
environments. Their payoffs are only determined by their own policies.

2.1 Single-agent Policy Teaching

Consider the situation where we want an agent i to execute a target policy π?, but the agent finds a
different policy π′ optimal forMi. To incentivize the agent to use π?, a typical way is to modify the
the reward function by providing additional rewards (positive or negative). We follow the literature
and consider only deterministic target policies. (Indeed, in general, one cannot hope to incentivize an
agent to use a non-deterministic policy only by tweaking the reward function.)

Specifically, the teacher chooses a reward adjustment function δi : S × A→ R, or adjustment for
short, whereby an additional reward δi(s, a) is provided whenever the agent takes an action a ∈ A
in a state s ∈ S. Effectively, the adjustment changes the agent’s reward function to R̃i(s, a) =

Ri(s, a) + δi(s, a). The agent then optimizes their policy with respect to R̃i, and will be incentivized
to use π? if it offers the maximum payoff (cumulative reward) with respect to R̃i. We can view each
agent’s payoff for policy π as a function of δi as follows:

ρπi (δi) := E

[ ∞∑
t=0

(γi)
t · R̃i(st, at)

∣∣∣∣∣ s0 ∼ z, π

]
.

Moreover, we define the V-function and Q-function of π given adjustment δi as:

V πi (s | δi) = Qπi (s, π(s) | δi),
and Qπi (s, a | δi) = R̃i(s, a) + γi · Es′∼P (s,a,·)V

π
i (s′ | δi).

The V-function captures the expected cumulative reward by starting from s and following π. The
Q-function captures the expected cumulative reward by starting from s, taking action a at the first
step, and following π subsequently. We have

ρπi (δi) = V πi (z | δi) := Es0∼zV πi (s0 | δi).

Using these two functions, the Bellman equation further characterizes the optimal policy in the MDP:
a policy π is optimal if and only if the following Bellman optimality equation holds: Qπi (s, π(s) |
δi) ≥ Qπi (s, a | δi) for all s ∈ S and a ∈ A.

Incentive Constraints Hence, the goal of policy teaching is to make the target policy π? a solution
to the Bellman optimality equation. Since the agent may find multiple policies optimal, a robustness
guarantee ε > 0 is imposed to strictly incentivize the agent to use π?, and this results in the following
incentive constraints:

Qπ
?

i (s, π?(s) | δi) ≥ Qπ
?

i (s, a | δi) + ε for all a 6= π?(s). (1)

The constraints ensure the optimality of π? even if there is a small error in the Q-values.

Cost Measures In addition to incentivizing π?, the teacher also wants to find the most cost-efficient
way of teaching. We consider the norm of the adjustment, which means the following cost measure:

cost(δi) = ‖δi‖ :=

 ∑
s∈S,a∈A

(δi(s, a))
2

1/2

. (2)

3 Teaching Multiple Agents and EFness

In the multi-agent setting, the teacher provides an adjustment to every agent in [n]. We call a
collection of adjustments (δi)i∈[n] an adjustment scheme. A basic approach for this setting is to deal
with each agent separately, by solving a single-agent teaching problem for each agent. The solution
obtained via this approach provides personalized adjustments to the agents and it minimizes the
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teacher’s total cost. Nevertheless, it might not be fair as we showed in the example of Figure 1. To be
more specific, we define three fairness notions, each being stronger than the previous one. We start
with the following weak EF notion.

Definition 3.1 (Weak envy-freeness (WEF)). An adjustment scheme (δi)i∈[n] is weakly envy-free
if it holds for all i ∈ [n] that

ρπ
?

i (δi) ≥ ρπ
?

i (δj) for all j ∈ [n]. (3)

In other words, no agent i would prefer the adjustment for another agent j to their own.

The above notion only compares the agents’ benefits under π?. When δi incentivizes agent i to use
π?, the left side of (3) is also exactly the highest possible benefit i can obtain given adjustment δi. But
this is not true for the adjustment on the right side: π? need not be optimal for agent i with respect to
Ri + δj ; a higher cumulative reward might be attainable if the agent switches to another policy. In
some scenarios, this higher potential reward may be a legitimate concern when fairness is evaluated.
The following stronger notion takes this aspect into account.

Definition 3.2 (Envy-freeness (EF)). An adjustment scheme (δi)i∈[n] is envy-free if it holds for all
i ∈ [n] that:

ρπ
?

i (δi) ≥ max
π

ρπi (δj) for all j ∈ [n]. (4)

An even stronger fairness notion defined below simply requires the same adjustment to be applied to
all the agents. It is completely fair in a sense.

Definition 3.3 (Strong envy-freeness (SEF)). An adjustment scheme (δi)i∈[n] is strongly envy-free
if δi = δj for all i, j ∈ [n].

LetDWEF, DEF, andDSEF denote the sets of adjustment schemes complying with the above fairness
notions respectively. It is not hard to see that: DWEF ⊇ DEF ⊇ DSEF.

Besides achieving EFness, the original goal of policy teaching is to incentivize the agents to use π?.
Hence, we will call adjustment schemes that satisfy equation (1) feasible schemes (Definition 3.4).
Indeed, the definitions of WEF and SEF would be meaningless without the feasibility requirement, in
which case they can be achieved trivially by providing zero additional reward to every agent. (The
definition of EF, on the other hand, already incorporates the incentive constraints as equation (3) also
includes the case where i = j, except that there is no ε robustness requirement.)

Definition 3.4 (Feasibility). An adjustment scheme (δi)i∈[n] is feasible (with respect to a robustness
guarantee ε > 0) if equation (1) holds for all i ∈ [n].

Sometimes only bonuses (non-negative additional rewards) are allowed, e.g., when one can provide
the agents with subsidies but cannot penalize them. Hence, we are also interested in finding non-
negative adjustment schemes defined as follows.

Definition 3.5 (Non-negativity). An adjustment scheme (δi)i∈[n] is non-negative if δi(s, a) ≥ 0 for
all i ∈ [n], s ∈ S, and a ∈ A.

Similarly to the single-agent policy teaching problem, cost-minimizing solutions are desired. We
consider the sum of the teaching costs in the multi-agent setting:

cost(δ) =
∑
i∈[n]

cost(δi).

4 Existence of Fair Solutions

Before we delve into the computation of a cost-minimizing solution, we first investigate the existence
of a solution with respect to the above defined fairness notions and requirements. Throughout this
section, we assume that the original rewards are bounded in the interval [−h, h], i.e., Ri(s, a) ∈
[−h, h] for all s, a, and i. Our first result shows that a fair and feasible solution always exists under
all of the above fairness notions, in particular under the strongest notion SEF.
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Figure 2: There are two agents, whose discount factors are γ1 = 0.9 and γ2 = 0.5, respectively.
S = {sx, sy, sz}, A = {a, b}, and all transitions are deterministic. Originally, the agents’ reward
functions are the same and their rewards are annotated as vectors on the edges, with R1(s, a) =
R2(s, a) = 0 and R1(s, b) = R2(s, b) = 1 for all s ∈ S. The states sx and sy are chosen as the
initial state with equal probability. The target policy π?, highlighted in red, is such that π?(s) = a
for all s ∈ S (i.e., it always selects action a).

Theorem 4.1. For any robustness guarantee ε > 0, an SEF and feasible adjustment scheme always
exists.1

Proof sketch. The idea is to penalize actions not following the target policy by a sufficiently large
value. We construct an adjustment scheme (δi)i∈i where

δi(s, a) =

{
0, if a = π?(s)

−maxi′∈[n]
2h

1−γi′
− ε, otherwise

for all s ∈ S and i ∈ [n]. The scheme is obviously SEF as δi is the same for all the agents. It can also
be verified that it is feasible. Intuitively, the penalty is so large such that once the agent is penalized,
the subsequent cumulative rewards cannot compensate for the loss due to this penalty even if the
highest rewards are attained at every subsequent step.

Nevertheless, the reverse is not true. If we only allow non-negative schemes, the existence of a
feasible solution cannot be taken for granted, and in general one cannot hope to teach a target policy
by placing large bonuses on actions following the target policy. As we prove in Theorem 4.2, the
example illustrated in Figure 2 does not admit any EF feasible solution (and hence neither an SEF
one), even though it involves only two agents and the agents have the same reward function (but
different discount factors).

Theorem 4.2. For any robust guarantee ε ≥ 0, a feasible adjustment scheme that is WEF and
non-negative may not exist, even when there are only two agents and their reward functions are the
same.

Proof. We show that there exists no feasible adjustment scheme that is WEF and non-negative in
the example illustrated in Figure 2. Suppose for the sake of contradiction that there exists a scheme
(δ1, δ2) which is EF, non-negative, and feasible.

Without loss of generality, we can assume that δ1(s, b) = δ2(s, b) = 0 for all s ∈ S. Indeed, it is not
hard to see that if there exists a WEF and feasible scheme with some or all of these values being
strictly positive, it will remain WEF and feasible if these values are reset to 0. Hence, it remains to
pin down the values for action a in the adjustment scheme. For ease of description, let xi = δi(sx, a)
and yi = δi(sy, a) for i ∈ {1, 2}.
We first argue that the following two inequalities hold:

x1 ≥ x2, and y2 ≥ y1. (5)

To see this, consider the WEF constraints defined in (3). The adjustment scheme considered is WEF,
so ρπ

?

i (δi) ≥ ρπ
?

i (δ−i), where −i is the index in {1, 2} that is different from i. Hence,

0.5 · V π
?

i (sx | δi) + 0.5 · V π
?

i (sy | δi) ≥ 0.5 · V π
?

i (sx | δ−i) + 0.5 · V π
?

i (sy | δ−i), (6)

1Full proofs and omitted proofs can all be found in the appendix.
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where 0.5 is the probability in the initial distribution. It is easy to derive the V-values of sx and sy
under π? as neither of them depends on the V-values of any other states. We have

V π
?

i (sx | δj) = Qπ
?

i (sx, a | δj) = 1
1−γi · xj , (7)

and V π
?

i (sy | δj) = Qπ
?

i (sy, a | δj) = yj . (8)

Plugging these two equations back into (6) gives

0.5 · 1
1−γi · xi + 0.5 · yi ≥ 0.5 · 1

1−γ−i · x−i + 0.5 · y−i.

Replacing γi with the corresponding values gives

10 · x1 + y1 ≥ 10 · x2 + y2 (9)
2 · x2 + y2 ≥ 2 · x1 + y1 (10)

Hence, (9)+(10) gives x1 ≥ x2, and (9)+5×(10) gives y2 ≥ y1.

Next, we turn to the feasibility constraints. The assumption that δi is feasible means that

Qπ
?

i (sx, a | δi) ≥ Qπ
?

i (sx, b | δi) + ε = 1 + γi · V π
?

i (sy | δi) + ε

and Qπ
?

i (sy, a | δi) ≥ Qπ
?

i (sy, b | δi) + ε = 1 + γi · V π
?

i (sx | δi) + ε

Substituting (7) and (8) into the above two equations gives:

1 + γi
1−γi · xi < yi <

1
γi(1−γi) · xi −

1
γi
. (11)

Using (5) and (11), we get that

9 · x1 + 1 < y1 ≤ y2 < 4 · x2 − 2 ≤ 4 · x1 − 2.

This means that x1 < 0 and contradicts the assumption that δ is a non-negative scheme.

It turns out that the agents’ discount factors play a crucial role: an identical discount factor is sufficient
for ensuring the existence of a feasible SEF solution. We present this result below.
Theorem 4.3. When the agents have the same discount factor, a feasible adjustment scheme that is
also SEF and non-negative always exists, for any robustness guarantee ε > 0.

Proof sketch. Suppose that γ1 = · · · = γn = γ. Let H = 2
1−γ · h+ ε. We construct the following

scheme δ = (δi)i∈[n]:

δi(s, a) =

{
H + γ

1−γ ·H ·
∑
s′∈ST P (s, a, s′), if a = π?(s)

0, otherwise

for all s ∈ S and i ∈ [n], where ST denotes the set of terminal states in S.

The scheme is obviously non-negative and SEF, so it remains to argue that it is feasible. Intuitively, δi
results in the agent receiving a reward that is sufficiently large (and is roughly the same) at every step
if the agent follows π?. Rewards are adjusted by a factor of 1/(1 − γ) at the subsequent terminal
states so that it is as if the process continues forever with the same reward H generated at every step
(but the cumulative reward 1

1−γ ·H is paid off at once). Therefore, under δi, the process is equivalent
to an infinite-horizon process where the agent gets a (roughly) constant positive reward H at every
step if the agent follows π?. This loss due to not following π? at some step is H , and it is sufficiently
large so that the optimal choice for the agent in such a process is to always follow π?.

5 Computing an Optimal Fair Solution

In terms of the computation of a cost-minimization fair solution, our main result is as follows. For
each of the EF notions we defined above, the set of fair solutions lie in a convex polytope defined
by polynomially many linear constraints. Hence, to find out a cost minimizing solution can be
formulated as a convex optimization problem given that the cost function (2) is a convex function of
the adjustment scheme. We show how the various types of constraints that need to be incorporated
can be written as linear constraints next.
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Feasibility Constraints A feasible scheme is characterized by the following linear constraints,
where in addition to the variables δi(s, a) encoding the adjustment scheme, we add an auxiliary
variable Vi(s) for each s ∈ S, and Qi(s, a) for each pair (s, a) ∈ S × A. The auxiliary variables
correspond to the V- and Q-functions of the target policy when δ is applied.

Vi(s) = Qi(s, π
?(s)) for all i, s (12a)

Qi(s, a) = Ri(s, a) + δi(s, a) + γi
∑
s′∈S

P (s, a, s′) · Vi(s′) for all i, s, a (12b)

Qi (s, π?(s)) ≥ Qi(s, a) + ε for all i, s, a 6= π?(s) (12c)

Specifically, the first two lines follow from the Bellman equation and capture the values V π
?

i (s | δi)
and Qπ

?

i (s, a | δi); the last line is the incentive constraints and enforces δ to be feasible.

Next, we consider each of the fairness notions.

SEF Constraints To enforce SEF simply amounts to the following constraints for each pair of
agents i, j ∈ [n], which enforces the schemes to be identical.

δi(s, a) = δj(s, a) for all s, a (13)

WEF Constraints To enforce WEF, we add variables Vi,j and Qi,j to capture the values V π
?

i (s |
δj) and Qπ

?

i (s, a | δj), i.e., the values agent i would have got had they been offered the adjustment
for agent j. Then we add the following constraints, which are similar to the Bellman equation, so that
these additional variables acquire the desired values.

Vi,j(s) = Qi,j(s, π
?(s)) for all i, j, s (14a)

Qi,j(s, a) = Ri(s, a) + δj(s, a) + γi
∑
s′∈S

P (s, a, s′) · Vi,j(s′) for all i, j, s, a (14b)

Thus, WEF simply amounts to the following constraints for each pair of agents i, j ∈ [n] (recall that
z is the distribution of the initial state):∑

s∈S zs · Vi(s) ≥
∑
s∈S zs · Vi,j(s) for all s, a (15)

EF Constraints Similarly to the approach for handling the WEF constraints, we need additional
variables to capture the values of each agent i had they been offered adjustment δj . Indeed, we also
use the constraints in (14) and (15) but replace (14a) with the following one:

Vi,j(s) ≥ Qi,j(s, a) for all i, j, s, a (16a)

which associates Vi,j(s) to the maximum Qi,j(s, a), instead of Qi,j(s, π?(s)). Note that under these
constraints, the value of Vi,j(s) in a solution is not necessarily equal to the V-value of s under the
optimal policy; it is only an upper bound of them. This will not cause any issue to the approach since
the solution is EF if and only if (15) holds for some upper bounds Vi,j(s) of V π

?

i (s | δj).

Non-negativity Constraints Finally, to enforce non-negativity, we simply need the additional
constraint: δi(s, a) ≥ 0 for all i, s, and a.

6 Price of Fairness

We now consider the price of fairness (PoF). The PoF measures the increase of teaching cost due to
consideration of fairness. In a similar spirit to the celebrated concept of the price of anarchy (PoA)
in game theory, the PoF compares the ratio between the minimum costs with and without fairness
constraints. We define the PoWEF, PoEF, and PoSEF for our three fairness notions, which stand for
the prices of WEF, EF, and SEF, respectively. Formally, let In,m,λ be the set of instances with n
agents, m state-action pairs (i.e., m = |S| · |A|), and 1

1−γi ≤ λ for all i ∈ [n]. We define

PoEF(n,m, λ) := max
I∈In,m,λ

minδ: EF and feasible for I cost(δ)

minδ: feasible for I cost(δ)
.
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Figure 3: There are n agents with discount factors γ1 = · · · = γn = γ. A = {a, b, c, d, e} and all
transitions are deterministic. The initial rewards are annotated at the corresponding edges, and they
are the same for agents 2, . . . , n (agent 1 has a different reward for action c). There are L− 1 sets
of additional copies of sl, sm, and sr. Every copy of sl and sr is connected to the copy of sm in
the same set. In addition, copies of sl and sr are also connected to s∗ (who has no copies). Each
new connection has the same initial rewards as its original copy. The initial state follows a uniform
distribution over sl, sm, and all their copies. The target policy is highlighted in red: π?(sl) = a,
π?(sr) = d, and π?(s∗) = c (and the same for the corresponding copies).

Namely, the value indicates how large the price can be for instances at the same scale. The PoWEF
and PoSEF can be defined in the same way with the corresponding notions.

We analyze the asymptotic growth of the PoF as functions of n, m, and λ. The results are presented
in Theorem 6.1 and all the bounds are tight. The PoF increases linearly with λ and sublinearly with
the size of the MDP in all the cases, and the PoEF and PoSEF also grows linearly with the number of
agents involved.
Theorem 6.1. PoWEF(n,m, λ) = Θ(λ ·

√
m), PoEF(n,m, λ) = Θ(λ · n ·

√
m), and

PoSEF(n,m, λ) = Θ(λ · n ·
√
m).

Due to space limit, we leave the detailed proofs of the PoF bounds to the appendix and only provide
some intuition about the bounds here. The lower bounds are obtained with the hard instances
illustrated in Figure 3. Without fairness consideration, all agents except agent 1 already find the target
policy optimal, whereas agent 1 prefers action e to d at state sr. Hence, it suffices to give agent 1 a
bonus of 1 for taking action c, and the overall cost is 1. Now consider the fairness constraints and
suppose that we still provide a bonus δ1(s∗, c) = 1. The consequence is that agents 2, . . . , n will be
envious of this bonus to agent 1. To achieve SEF for example, the same bonus will have to be offered
to these agents as well. However, a bonus on c will also incentivize the agents to take action b instead
of a, leading to violation of the feasibility constraint. Inevitably, to construct a feasible and fair in
this example, we cannot hope to only modify the reward for action c (and only the reward for agent 1
when EF and SEF are considered). Modifying the other rewards is however much more costly since
each one of them has L− 1 copies of themselves, which requires the same modification by symmetry.

To derive the upper bounds, for the PoWEF we construct the following adjustment scheme δ =
(δi)i∈[n] in a similar approach to proving the existence of a fair solution in Theorem 4.1:

δi(s, x) =

{
0, if x = π?(s)

− 2
1−γi · Ci, otherwise

where Ci denotes the minimum cost for teaching agent i when fairness is not considered. Let δ̂i be
the adjustment achieving the minimum cost for each i. It can be easily verified that ‖δi‖‖δ̂i‖ ≤ 2λ ·

√
m

for all i ∈ [n], and hence PoWEF(n,m, λ) ≤
∑
i∈[n]‖δi‖∑
i∈[n]‖δ̂i‖

= O (λ ·
√
m). Moreover, δ is WEF since

the scheme only penalizes actions that do not follow the target policy. The argument for showing
that δ is feasible is more involved and we leave it to the appendix. A similar approach can be used to
derive the upper bounds of the PoEF and the PoSEF, where we penalize actions that do not follow the
policy even more, by −maxj∈[n]

3
1−γj · Cj . This also leads to a dependency on n in the bound.
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PoWEF PoEF PoSEF

No restriction Θ(λ ·
√
m) Θ(λ · n ·

√
m) Θ(λ · n ·

√
m)

Non-neg & identical γ Θ(λ · n ·
√
m) Θ(λ2 · n ·

√
m) Θ(λ2 · n ·

√
m)

Table 1: Summary of the PoF.

6.1 PoF with Non-negative Adjustments

We also investigate PoF with non-negative adjustments and compare the costs of the best non-negative
adjustment schemes with and without the fairness constraints. Since a feasible and fair solution may
not exist with non-negative adjustments, we analyze the case where the agents have the same discount
factor. The existence of a feasible fair solution is guaranteed in this case according to Theorem 4.3.
The PoF bounds are presented in Theorem 6.2, where the PoWEF now also depend on the number of
agents, and the bounds of the PoEF and PoSEF depend quadratically on λ.
Theorem 6.2. When the scheme is required to be non-negative and all the agents have the same
discount factor, it holds that PoWEF(n,m, λ) = Θ(λ ·n ·

√
m), PoEF(n,m, λ) = Θ(λ2 ·n ·

√
m),

and PoSEF(n,m, λ) = Θ(λ2 · n ·
√
m).

The reason why the lower bound of the PoWEF now increases with n can be seen intuitively from
the instances in Figure 3, too. Now that the adjustments must be non-negative, to incentivize agent 1
to choose action c, a bonus of at least 1 has to be offered. Accordingly, in order for agent 2 (or any
agent i ≥ 2) to not envy this bonus, additional bonuses must be offered to them as well, resulting
in a growth with the number of agents. (Without non-negativity, we can penalize agent 1 instead of
offering agents 2, . . . , n bonuses to avoid a dependency on n in the lower bound of the PoWEF.) The
proofs of the bounds can be found in the appendix and all the PoF bounds are summarized in Table 1.

7 Conclusion

We studied the fairness issue in policy teaching and adopted the notion of envy-freeness to formalize
the problem. Several fundamental questions regarding the existence of a fair solution, the computation
of cost-minimization solution, and the price of considering fairness have been answered in the paper.
For future work, it would be interesting to generalize the model to other reward design settings, where
a larger set of design objectives or cost measures can be considered. For example, one can use the
cumulative payment of the teacher as the cost measure. Indeed, since the cumulative payment is a
linear function of the adjustments, the same computation approach we presented applies by replacing
the objective function, whereby we obtain a linear program. In terms of the PoF bounds, in a previous
version of this work we conjectured that similar bounds can be derived with the cumulative payment
cost measure, but it turns out the PoF might also depend on other factors such as the initial state
distribution. A detailed analysis of the bounds is an interesting direction for future work.

Limitations As we mentioned earlier in the paper, policy teaching is equivalent to reward poisoning
from a technical point of view. Hence, almost any techniques that applies to policy teaching also
applies immediately to solve reward poisoning problems. We note this potential negative social
impact of our results but also remark that since our consideration is fairness we are not aware of any
scenario where a malicious party considers fairness when launching a poisoning attack. There are
many other notions of fairness, equity, and equality. The EF notions we studied are concerned with
the additional rewards provided by the adjustment scheme but not with the overall rewards. Hence,
they are not applicable if the latter should be the key consideration.
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A Existence of Fair Solutions

Theorem 4.1. For any robustness guarantee ε > 0, an SEF and feasible adjustment scheme always
exists.2

Proof. The idea is to penalize actions off the target policy by a sufficiently large value. We construct
an adjustment scheme (δi)i∈i where

δi(s, a) =

{
0, if a = π?(s)

−maxi′∈[n]
2h

1−γi′
− ε, otherwise

for all s ∈ S and i ∈ [n]. The scheme is SEF as δi is the same for all the agents.

To see that it is also feasible, observe that by following the target policy π?, an agent obtains reward
at least −h in every step. Hence, for all s ∈ S and all a 6= π?(s), we have

Qπ
?

i (s, π?(s) | δi) ≥ −
h

1− γi
≥ − max

i′∈[n]

h

1− γi′
.

It then follows that

Qπ
?

i (s, π?(s) | δi) ≥ δi(s, a) +
h

1− γi
+ ε

≥ δi(s, a) + γi ·
∑
s′∈S

P (s, a, s′) · V π
?

i (s′ | δi) + ε

= Qπ
?

i (s, a | δi) + ε,

where we used the fact that V π
?

i (s′ | δi) ≤ h
1−γi for all s′, which is due to the fact that the reward

obtained at every step is at most h.

Theorem 4.3. When the agents have the same discount factor, a feasible adjustment scheme that is
also SEF and non-negative always exists, for any robustness guarantee ε > 0.

Proof. Suppose that γ1 = · · · = γn = γ. Let H = 2
1−γ · h+ ε. We construct the following scheme

δ = (δi)i∈[n]:

δi(s, a) =

{
H + γ

1−γ ·H ·
∑
s′∈ST P (s, a, s′), if a = π?(s)

0, otherwise
(17)

for all s ∈ S and i ∈ [n], where ST denotes the set of terminal states in S. The scheme is obviously
non-negative and SEF. We show that it is also feasible.

Consider an arbitrary agent i. We first argue that V π
?

i (s | δi) ∈
[
H−h
1−γ ,

H+h
1−γ

]
for all s ∈ S \ ST.

Indeed, if the original reward function Ri was a zero function (Ri(s, a) = 0), it can be easily verified
that the solution to the Bellman equation would be: V π

?

i (s | δi) = H
1−γ for all s ∈ S \ ST and

V π
?

i (s | δi) = 0 for all s ∈ ST. Now the original reward Ri(s, a) is bounded in [−h, h], which
means an additional reward in this range in each step and, hence, an additional cumulative reward in
the interval

[
−h
1−γ ,

h
1−γ

]
. Adding this to H

1−γ gives the desired range
[
H−h
1−γ ,

H+h
1−γ

]
.

Hence, V π
?

i (s | δi) ∈
[
H−h
1−γ ,

H+h
1−γ

]
for all s ∈ S. This further implies that, for any actions a, b ∈ A,

it holds that ∑
s′∈S

P (s, a, s′) · V π
?

i (s′ | δi) ≥
∑
s′∈S

P (s, b, s′) · V π
?

i (s′ | δi)−
2h

1− γ
. (18)

2Full proofs and omitted proofs can all be found in the appendix.
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We have
Qπ

?

i (s, π?(s) | δi) = Ri(s, π
?(s)) + δi(s, π

?(s)) + γ ·
∑
s′∈S

P (s, π?(s), s′) · V π
?

i (s′ | δi)

≥ −h+H + γ ·
∑
s′∈S

P (s, π?(s), s′) · V π
?

i (s′ | δi)

≥ h+ ε+ γ ·
∑
s′∈S

P (s, a, s′) · V π
?

i (s′ | δi)

for any a ∈ A, where the last line follows by (18) and the fact that H = 2γ
1−γ · h + 2h + ε. By

definition, we have δi(s, a) = 0 for all a 6= π?(s). It follows that

Qπ
?

i (s, π?(s) | δi) ≥ Ri(s, a) + δi(s, a) + γ ·
∑
s′∈S

P (s, a, s′) · V π
?

i (s′ | δi) + ε

= Qπ
?

i (s, a | δi) + ε.

Therefore, δ is a feasible scheme.

B PoF Bounds

We analyze PoWEF first, and then PoEF and PoSEF.

B.1 PoWEF

To analyze the PoWEF, we first derive its lower bound.
Lemma B.1. PoWEF(n,m, λ) = Ω(λ ·

√
m).

Proof. Consider the family of instances illustrated in Figure 3, and we consider the two-agent version
of this example (n = 2) that consists of only agents 1 and 2. We show that the PoWEF of this
particular family of instances is Ω(λ ·

√
|S| · |A|) to establish the lower bound of PoWEF.

First, the cost of teaching π? without fairness constraints is at most 1. Indeed, without fairness
constraints, π? is already the optimal policy of agent 2 up to a robustness of ε. As for agent 1, it
suffices to set δ1(c) = 1. Hence, the total cost is 1.

Now consider the case with fairness constraints and suppose that δ = (δ1, δ2) is a WEF and feasible
adjustment scheme. We argue that ‖δ1‖+ ‖δ2‖ = Ω(λ ·

√
|S| · |A|).

By symmetry, we can assume without loss of generality that each δi assigns the same reward for a
state-action pair and its copies in the instance. Hence, in our analysis, it suffices to consider only the
values associated with the original state-action pairs, which are representative of the values associated
with their copies. Given this, we omit the state in the notation and write, e.g., δi(a) = δi(sl, a), as
each action is associated with a unique state.

Consider the following two cases:

Case 1: δ1(c) ≤ 1/2. Since δ1 incentivizes agent 1 to use the target policy π?, we have
Qπ

?

1 (sr, d) ≥ Qπ?1 (sr, e) + ε, or equivalently,

δ1(d) + ε+
γ

1− γ
· (δ1(c)− 1) ≥ δ1(e) + ε.

Rearranging the terms gives

δ1(e)− δ1(d) ≤ γ

1− γ
· (δ1(c)− 1) ≤ −1

2
· γ

1− γ
.

Note that for any two real numbers x and y, we have x2 + y2 ≥ (x−y)2
2 . Hence,

‖δ1‖ ≥
√
L ·
√
δ21(e) + δ21(d) ≥

√
L ·

√
(δ1(e)− δ1(d))

2

2

≥
√
L · 1√

8
· γ

1− γ
= Ω(λ ·

√
|S| · |A|).

15



Case 2: δ1(c) ≥ 1/2. By WEF, we have ρπ
?

1 (δ1) ≥ ρπ
?

1 (δ2) and ρπ
?

2 (δ2) ≥ ρπ
?

2 (δ1). Let
%π

?

i (δj) = ρπ
?

i (δj) − ρπ
?

i (0), where ρπ
?

i (0) denotes the agent’s cumulative reward without any
adjustment. Since now both agents 1 and 2 have the same discount factor γ, we have

%π
?

1 (δj) = %π
?

2 (δj)

for any j. Hence,

ρπ
?

1 (δ1) ≥ ρπ
?

1 (δ2) =⇒ %π
?

1 (δ1) ≥ %π
?

1 (δ2) = %π
?

2 (δ2),

and ρπ
?

2 (δ2) ≥ ρπ
?

2 (δ1) =⇒ %π
?

2 (δ2) ≥ %π
?

2 (δ1) = %π
?

1 (δ1),

which means that %π
?

1 (δ1) = %π
?

2 (δ2). Expanding this gives

δ1(a) +

(
δ1(d) +

γ

1− γ
· δ1(c)

)
= δ2(a) +

(
δ2(d) +

γ

1− γ
· δ2(c)

)
. (19)

Moreover, δ2 incentivizes agent 2 to use the target policy π?, so we haveQπ
?

2 (sl, a) ≥ Qπ?2 (sl, b)+ ε,
expanding which gives

δ2(a) + ε ≥ δ2(b) +
γ

1− γ
· δ2(c) + ε.

Combining (19) with the above equation gives

2 · δ2(a)− δ2(b) + δ2(d)− δ1(a)− δ1(d) ≥ γ

1− γ
· δ1(c) ≥ 1

2
· γ

1− γ
.

Note that for any real numbers x1, . . . , xk and nonzero coefficients a1, . . . , ak, we have
∑k
i=1 x

2
i ≥(∑k

i=1 ai · xi
)2
/
∑k
i=1 a

2
i . It follows that

‖δ1‖+ ‖δ2‖ ≥
√
L ·
√
δ22(a) + δ22(b) + δ22(d) + δ21(a) + δ21(d)

≥
√
L · 1√

32
· γ

1− γ
= Ω(λ ·

√
|S| · |A|).

Therefore, in both cases, we have ‖δ1‖+ ‖δ2‖ = Ω(λ ·
√
|S| · |A|), which completes the proof.

Lemma B.2. PoWEF(n,m, λ) = O(λ ·
√
m).

Proof. Suppose that without the fairness constraints the minimum costs for teaching π? is Ci for
each agent i ∈ [n]; let δ̂i be the adjustment achieving this minimum cost for each i ∈ [n], and let
δ̂ =

(
δ̂i

)
i∈[n]

. Hence,
∣∣∣δ̂i(s, a)

∣∣∣ ≤ ∥∥∥δ̂i∥∥∥ = Ci for all i, s, and a.

We construct the following adjustment scheme δ = (δi)i∈[n] in an approach similar to that in the
proof of Theorem 4.1. We let

δi(s, a) =

{
0, if a = π?(s)

− 2
1−γi · Ci, otherwise

(20)

for all s ∈ S and i ∈ [n]. With this δ, we have

‖δi‖∥∥∥δ̂i∥∥∥ =

√∑
s∈S,a∈A(δi(s, a))2

Ci
≤

√
|S| · |A| · 2

1−γi · Ci
Ci

= 2λ ·
√
|S| · |A|. (21)

Hence, the price of using δ is∑
i∈[n] ‖δi‖∑
i∈[n]

∥∥∥δ̂i∥∥∥ ≤ 2λ ·
√
|S| · |A| = O

(
λ ·
√
|S| · |A|

)
.

Therefore, it remains to argue that δ is feasible and WEF.
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Feasibility Compare the differences in the V-values when δ̂ and δ are applied. Since V π
?

i only
depends on the rewards of state-action pairs chosen by π?, we have∣∣∣V π?i (s | δi)− V π

?

i

(
s
∣∣∣ δ̂i)∣∣∣ =

∣∣∣∣∣E
[ ∞∑
t=0

(γi)
t ·
(
δi(st, π

?(st))− δ̂i(st, π?(st))
) ∣∣∣∣∣ s0 ∼ z, π?

]∣∣∣∣∣
=

∣∣∣∣∣E
[ ∞∑
t=0

(γi)
t · δ̂i(st, π?(st))

∣∣∣∣∣ s0 ∼ z, π?

]∣∣∣∣∣
≤

∣∣∣∣∣
∞∑
t=0

(γi)
t · Ci

∣∣∣∣∣
=

1

1− γi
· Ci. (22)

Now compare the Q-values. We have

Qπ
?

i (s, π?(s) | δi)−Qπ
?

i

(
s, π?(s)

∣∣∣ δ̂i)
= δi(s, π

?(s))− δ̂i(s, π?(s)) + γi · Ex∼P (s,π?(s),·)

(
V π

?

i (x | δi)− V π
?

i

(
x
∣∣∣ δ̂i))

≥ −Ci −
γi

1− γi
· Ci (by (22))

= − 1

1− γi
· Ci.

Whereas for any a 6= π?(s),

Qπ
?

i (s, a | δi)−Qπ
?

i

(
s, a

∣∣∣ δ̂i) = δi(s, a)− δ̂i(s, a) + γi · Ex∼P (s,a,·)

(
V π

?

i (x | δi)− V π
?

i

(
x
∣∣∣ δ̂i))

≤ δi(s, a)− δ̂i(s, a) +
γi

1− γi
· Ci (by (22))

≤ − 2

1− γi
· Ci + Ci +

γi
1− γi

· Ci (by (20) and
∥∥∥δ̂i∥∥∥ = Ci)

= − 1

1− γi
· Ci

Combining the above two equations gives

Qπ
?

i (s, π?(s) | δi)−Qπ
?

i (s, a | δi) ≥ Qπ
?

i

(
s, π?(s)

∣∣∣ δ̂i)−Qπ?i (
s, a

∣∣∣ δ̂i)
for any s ∈ S and a 6= π?(s). Indeed, since δ̂ is feasible, by definition we have

Qπ
?

i

(
s, π?(s)

∣∣∣ δ̂i) ≥ Qπ?i (
s, a

∣∣∣ δ̂i)+ ε

if a 6= π?(s). It then follows that

Qπ
?

i (s, π?(s) | δi)−Qπ
?

i (s, a | δi) ≥ ε

for all a 6= π?(s). Since the choice of i is arbitrary, by definition δ is feasible.

Fairness Indeed, since δ offers no additional reward for state-action pairs specified by the target
policy π?, we have ρπ

?

i (δi) = ρπ
?

i (0) = ρπ
?

i (δj) for all i, j ∈ [n]. Hence, δ is WEF.

B.2 PoEF and PoSEF

Next we turn to PoEF and PoSEF.

Lemma B.3. PoEF(n,m, λ) = Ω(λ · n ·
√
m).
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Proof. We use the class of instances illustrated in Figure 3. Similarly to the two-agent version of the
instances we used in the proof of Lemma B.1, the cost of teaching π? without fairness constraints
is at most 1. It suffices to set δ1(s∗, c) = 1 for agent 1, and keep the reward functions of all other
agents as is since π? is already optimal for agents 2, . . . , n up to robustness ε.

Now consider the case with fairness constraints. Suppose that δ = (δ1, . . . , δn) is an EF and feasible
adjustment scheme, and without loss of generality δ2 = · · · = δn. We argue that

∑
i∈[n] ‖δi‖ =

Ω(λ · n ·
√
|S| · |A|) to complete the proof.

Similarly to the argument in the proof of Lemma B.1, by symmetry we can assume without loss of
generality that each δi assigns the same reward for a state-action pair and its copy, so we omit the
state in the notation of δi and write, e.g., δi(a) = δi(sl, a), as each action is associated with a unique
state that is not a copy.

Consider the following two cases:3

Case 1: δ2(c) ≥ 1/2. Since δ2 incentivizes agent 2 to use the target policy π?, we have
Qπ

?

2 (sl, a) ≥ Qπ?2 (sl, b) + ε, or equivalently,

δ2(a) + ε ≥ δ2(b) +
γ

1− γ
· δ2(c) + ε.

Rearranging the terms gives

δ2(a)− δ2(b) ≥ γ

1− γ
· δ2(c) ≥ 1

2
· γ

1− γ
.

For any real numbers x and y, we have x2 + y2 ≥ (x−y)2
2 . Hence,

‖δ2‖ ≥
√
L ·
√
δ22(a) + δ22(b) ≥

√
L ·

√
(δ2(a)− δ2(b))

2

2

≥
√
L · 1√

8
· γ

1− γ
= Ω(λ ·

√
|S| · |A|).

Case 2: δ2(c) ≤ 1/2. By EF, we have ρπ
?

1 (δ1) ≥ ρπ
?

1 (δ2) and ρπ
?

2 (δ2) ≥ ρπ
?

2 (δ1). The same as
the proof of Lemma B.1, since the agents have the same discount factor, we have ρπ

?

1 (δ1)−ρπ?1 (0) =
ρπ

?

2 (δ2)− ρπ?1 (0), expanding which gives the following equation (the same as (19)).

δ1(a) +

(
δ1(d) +

γ

1− γ
· δ1(c)

)
= δ2(a) +

(
δ2(d) +

γ

1− γ
· δ2(c)

)
. (23)

Now by EF, agent 1 would not be better off if they were given δ2 and deviated to a policy π with
π(sl) = a and π(sr) = e. Namely, ρπ

∗

1 (δ1) ≥ ρπ1 (δ2), or equivalently

δ1(a) + δ1(d) +
γ

1− γ
· (δ1(c)− 1) ≥ δ2(a) + δ2(e).

Combining (23) with the above equation gives

δ2(d)− δ2(e) ≥ γ

1− γ
· (1− δ2(c)) ≥ 1

2
· γ

1− γ
.

For any real numbers x and y, we have x2 + y2 ≥ (x−y)2
2 . It follows that

‖δ2‖ ≥
√
L ·
√
δ22(d) + δ22(e)

≥
√
L · 1√

8
· γ

1− γ
= Ω(λ ·

√
|S| · |A|).

3The analysis of these two cases are similar to the analysis in the proof of Lemma B.1, but with a few
differences. In particular, we focus on the adjustment for agent 2 in this proof and aim to show that ‖δ2‖ =

Ω(λ ·
√
|S| · |A|) for both cases, whereas when WEF is considered we can only bound ‖δ1‖ or ‖δ1‖+ ‖δ2‖ in

the proof of Lemma B.1.
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Therefore, in both cases, we have ‖δ2‖ = Ω(λ ·
√
|S| · |A|). Since δ2 = δ3 = · · · = δn, we have

cost(δ) ≥
n∑
i=2

‖δi‖ = Ω(λ · n ·
√
|S| · |A|),

which completes the proof.

Lemma B.4. PoSEF(n,m, λ) = O(λ · n ·
√
m).

Proof. The proof is similar to the proof of Lemma B.2. We penalize actions off the policy and let

δi(s, a) =

{
0, if a = π?(s)

−maxj∈[n]
3

1−γj · Cj , otherwise

for all s ∈ S and i ∈ [n]. Hence, δ is SEF as all δi’s are the same.

Similarly to (21), with this adjustment scheme δ, we now have

‖δi‖

maxj∈[n]

∥∥∥δ̂j∥∥∥ =

√∑
s∈S,a∈A(δi(s, a))2

maxj∈[n] Cj
≤ 3λ ·

√
|S| · |A|.

Hence, the price of using δ is∑
i∈[n] ‖δi‖∑
i∈[n]

∥∥∥δ̂i∥∥∥ ≤
∑
i∈[n] ‖δi‖

maxi∈[n]

∥∥∥δ̂i∥∥∥ ≤ n · 3λ ·
√
|S| · |A| = O

(
λ · n ·

√
m
)
.

The feasibility of δ follows by the same argument in the proof of Lemma B.2.

Summarizing the above lemmas, we get the following main theorem.
Theorem 6.1. PoWEF(n,m, λ) = Θ(λ ·

√
m), PoEF(n,m, λ) = Θ(λ · n ·

√
m), and

PoSEF(n,m, λ) = Θ(λ · n ·
√
m).

Proof. The bound of the PoWEF follows by the lower and upper bounds established in Lemmas B.1
and B.2.

Since SEF is a stronger requirement than EF, the bounds of the PoEF and PoSEF follow by Lem-
mas B.3 and B.4.

C PoF Bounds with Non-negativity

Since a feasible and fair solution may not exist with non-negative adjustments, we analyze the case
where the agents have the same discount factor. The existence of a feasible fair solution is guaranteed
in this case according to Theorem 4.3.

C.1 PoWEF

Lemma C.1. PoWEF(n,m, λ) = Ω(λ · n ·
√
m) when the scheme is required to be non-negative

and all the agents have the same discount factor.

Proof. Consider the family of instances illustrated in Figure 4. We show that the PoWEF of this
particular family of instances is Ω(λ · n ·

√
m) to establish the lower bound.

First, the cost of teaching π? without fairness constraints is at most 1: the target policy π? is already
optimal for agent 2, and it suffices to set δ1(sr, c) = 1 to incentivize agent 1.

Now consider the case with fairness constraints and suppose that δ = (δ1, . . . , δn) is a WEF and
feasible adjustment scheme. Without loss of generality, we can assume that δ2 = δ3 = · · · = δn, and
we argue that ‖δ2‖ = Ω(λ ·

√
m) to finish the proof.
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sl srs∗ s∗∗a

(ε, . . . , ε)
b

(0, . . . , 0)
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(−1, 0, . . . , 0)

d
(−ε, . . . ,−ε)

L
−
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co
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s
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Figure 4: There are n agents, all with discount factor γ. A = {a, b, c, d} and all transitions are
deterministic. The initial rewards are annotated on the corresponding edges, and they are identical
for agents 2, . . . , n. There are L − 1 copies of sl, each connected to s∗ and sr the same way sl is
connected to these two states (and with the same initial rewards). The initial state distribution has
probability 0.5/L on sl as well as each of its copies, and 0.5 on sr. The target policy is highlighted
in red: π?(s) = a for s = sl and its copies, and π?(sr) = c.

By symmetry, we can assume without loss of generality that each δi assigns the same reward for
a state-action pair and its copies in the instance. Hence, it suffices to consider only the values
associated with the original state-action pairs, and we omit the state in the notation and write, e.g.,
δi(a) = δi(sl, a), as each action is associated with a unique state.

Consider the following two cases.

Case 1: δ2(c) ≥ 1/2. Since δ2 incentivizes agent 2 to use the target policy π?, we have
Qπ

?

2 (sl, a) ≥ Qπ?2 (sl, b) + ε, or equivalently,

δ2(a) + ε ≥ δ2(b) +
γ

1− γ
· δ2(c) + ε.

Since δ2 is non-negative and by assumption δ2(c) ≥ 1/2 in this case, we get that δ2(a) ≥ 1
2 ·

γ
1−γ .

By symmetry this also holds for all copies of action a. It follows that

‖δ2‖ ≥
√
L

2
· γ

1− γ
= Ω(λ

√
m).

Case 2: δ2(c) ≤ 1/2. Note that since δ1 is non-negative and it incentivizes agent 1 to select action
c, it must be that δ1(c) ≥ 1. By WEF, we have ρπ

?

2 (δ2) ≥ ρπ?2 (δ1), which means

0.5 · (ε+ δ2(a)) + 0.5 · 1

1− γ
· δ2(c) ≥ 0.5 · (ε+ δ1(a)) + 0.5 · 1

1− γ
· δ1(c).

Rearranging the terms and using the facts that δ1(c) ≥ 1 and all adjustments are non-negative, we get
that δ(a) ≥ 1

2 ·
1

1−γ and

‖δ2‖ ≥
√
L

2
· 1

1− γ
= Ω(λ

√
m).

Therefore, in both cases, ‖δ2‖ = Ω(λ ·
√
m). Since δ2 = δ3 = · · · = δn, we have cost(δ) ≥∑n

i=2 ‖δi‖ = Ω(λ · n ·
√
m), which completes the proof.

Lemma C.2. PoWEF(n,m, λ) = O(λ · n ·
√
m) when the scheme is required to be non-negative

and all the agents have the same discount factor.

Proof. Suppose that without the fairness constraints the minimum costs for teaching π? is Ci for
each agent i ∈ [n]; let δ̂i be the adjustment achieving this minimum cost for each i ∈ [n], and let
δ̂ =

(
δ̂i

)
i∈[n]

. Hence,
∣∣∣δ̂i(s, x)

∣∣∣ ≤ ∥∥∥δ̂i∥∥∥ = Ci for all i, s, and x.
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Note that since the agents have the same discount factor, the improvement %π
?

of the cumulative
reward is the same for all i ∈ [n]:

%π
?
(
δ̂j

)
:= ρπ

?

i

(
δ̂j

)
− ρπ

?

i (0).

For each i ∈ [n], we let

Hi = (1− γ) ·
(

max
j∈[n]

%π
?
(
δ̂j

)
− %π

?
(
δ̂i

))
.

Then we construct the following adjustment scheme δ = (δi)i∈[n]:

δi(s, a) =

{
δ̂i(s, a) +Hi + γ

1−γ ·Hi ·
∑
s′∈ST P (s, a, s′), if a = π?(s)

0, otherwise
(24)

For any s and a, we have

δi(s, a) ≤ δ̂i(s, a) +
1

1− γ
·Hi

≤ δ̂i(s, a) + max
j∈[n]

%π
?

i

(
δ̂j

)
≤ 2

1− γ
·max
j∈[n]

Cj ,

where we use δ̂i(s, a) ≤ maxj∈[n] Cj and %π
?

i

(
δ̂j

)
≤ 1

1−γ · Cj , and the latter is due to the fact that

the agent gets an additional reward of at most Cj at each time step when δ̂j is applied. It follows that
the price of using δ is

cost(δ)

cost
(
δ̂
) ≤ ∑

i∈[n] ‖δi‖

maxi∈[n]

∥∥∥δ̂i∥∥∥ ≤
n · 2λ ·maxi∈[n] Ci ·

√
|S| · |A|

maxi∈[n] Ci
= O

(
λ · n ·

√
m
)
.

Therefore, it remains to argue that δ is feasible and WEF.

Now that non-negativity is imposed, we can assume without loss of generality that δ̂i(s, a) = 0 for
all s ∈ S and a 6= π?(s). Therefore, the way δ is defined in (24) is equivalent to adding an additional
reward Hi to agent i on top of what is already offered by δ̂i. The term γ

1−γ ·Hi ·
∑
s′∈ST P (s, a, s′)

adjusts the reward in consideration of subsequent terminal states, so that it is as if the process
continues forever with an additional Hi offered at every subsequent step. Consequently, this improves
the V-value of every non-terminal state by 1

1−γ ·Hi, i.e., for every s ∈ S \ST and every pair i, j ∈ [n]

we have
V π

?

i (s | δj) = V π
?

i

(
s
∣∣∣ δ̂j)+

1

1− γ
·Hi. (25)

Feasibility Since the V-values of all non-terminal states increase by the same amount, δ remains
feasible. Specifically, since δ̂ is feasible, we have

Qπ
?

i

(
s, π?(s)

∣∣∣ δ̂i) ≥ Qπ?i (
s, a

∣∣∣ δ̂i)+ ε

for all s and a 6= π?(s). Now compare δ and δ̂. We have

Qπ
?

i (s, π?(s) | δi)−Qπ
?

i

(
s, π?(s)

∣∣∣ δ̂i)
= δi(s, π

?(s))− δ̂i(s, π?(s)) + γ · Ex∼P (s,π?(s),·)

(
V π

?

i (x | δi)− V π
?

i

(
x
∣∣∣ δ̂i))

= δi(s, π
?(s))− δ̂i(s, π?(s)) + γ ·

∑
x∈S\ST

P (s, π?(s), x) ·
(
V π

?

i (x | δi)− V π
?

i

(
x
∣∣∣ δ̂i))

+ γ ·
∑
x∈ST

P (s, π?(s), x) ·
(
V π

?

i (x | δi)− V π
?

i

(
x
∣∣∣ δ̂i))

= Hi + γ ·
∑

x∈S\ST

P (s, π?(s), x) ·
(
V π

?

i (x | δi)− V π
?

i

(
x
∣∣∣ δ̂i))

+ γ ·
∑
x∈ST

P (s, π?(s), x) ·
(

1

1− γ
·Hi + V π

?

i (x | δi)− V π
?

i

(
x
∣∣∣ δ̂i)) ,
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Using (25) and the fact that the V-values of all the terminal states are zero, we further get that

Qπ
?

i (s, π?(s) | δi)−Qπ
?

i

(
s, π?(s)

∣∣∣ δ̂i)
= Hi + γ ·

∑
x∈S\ST

P (s, π?(s), x) · 1

1− γ
·Hi + γ ·

∑
x∈ST

P (s, π?(s), x) · 1

1− γ
·Hi

=
1

1− γ
·Hi.

Next, consider actions a 6= π?(s). We have

Qπ
?

i (s, a | δi)−Qπ
?

i

(
s, a

∣∣∣ δ̂i) = δi(s, a)− δ̂i(s, a) + γ · Ex∼P (s,a,·)

(
V π

?

i (x | δi)− V π
?

i

(
x
∣∣∣ δ̂i))

≤ γ · Ex∼P (s,a,·)

(
V π

?

i (x | δi)− V π
?

i

(
x
∣∣∣ δ̂i))

≤ γ

1− γ
·Hi.

It follows that

Qπ
?

i (s, π?(s) | δi)−Qπ
?

i (s, a | δi) ≥ Qπ
?

i

(
s, π?(s)

∣∣∣ δ̂i)−Qπ?i (
s, a

∣∣∣ δ̂i) ≥ ε
for any s ∈ S and a 6= π?(s). Since the choice of i is arbitrary, δ is feasible.

Fairness By definition ρπ
?

i (δj) = V π
?

i (z | δj), where z is the initial state distribution. Using (25),
we then get that

ρπ
?

i (δj) = ρπ
?

i

(
δ̂j

)
+

1

1− γ
·Hi

= ρπ
?

i

(
δ̂j

)
+ max
i′∈[n]

%π
?
(
δ̂i′
)
− %π

?
(
δ̂i

)
≤ ρπ

?

i

(
δ̂i

)
+ max
i′∈[n]

%π
?
(
δ̂i′
)
− %π

?
(
δ̂i

)
(as δ̂ is WEF)

= ρπ
?

i (0) + max
i′∈[n]

%π
?
(
δ̂i′
)

for all i, j ∈ [n]. The right side does not depend on j, which means ρπ
?

i (δi) = ρπ
?

i (δj), for all j, so δ
is WEF.

C.2 PoEF and PoSEF

Lemma C.3. PoEF(n,m, λ) = Ω(λ2 ·n ·
√
m) when the scheme is required to be non-negative and

all the agents have the same discount factor.

Proof. Consider the family of instances illustrated in Figure 5. We show that the PoEF of this
particular family of instances is Ω(λ2 · n ·

√
m) to establish the lower bound.

First, the cost of teaching π? without fairness constraints is at most 2: the target policy π? is already
optimal for agents 3, . . . , n, and it suffices to set δ1(sl, c) = 1 to incentivize agent 1.

Now consider the case with fairness constraints and suppose that δ = (δ1, . . . , δn) is EF and feasible.
Without loss of generality, we can assume that δ3 = · · · = δn, and we argue that ‖δ2‖ = Ω(λ2·n·

√
m)

to finish the proof.

By symmetry, we can assume without loss of generality that each δi assigns the same reward for
a state-action pair and its copies in the instance. Hence, it suffices to consider only the values
associated with the original state-action pairs, and we omit the state in the notation and write, e.g.,
δi(a) = δi(sl, a), as each action is associated with a unique state.

Observe that the structure of the MDP is symmetric with respect to agents 1 and 2. Hence, without
loss of generality, we can also assume the same symmetry in δ:

δ1(a) = δ2(h), δ1(h) = δ2(a), δ1(c) = δ2(f), and δ1(f) = δ2(c). (26)
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Figure 5: There are n agents, all with discount factor γ. A = {a, b, c, . . . , h} and all transitions are
deterministic. The initial rewards of agents 1, 2, and 3 are annotated on the corresponding edges (if
there is only one number, then all the agents have the same reward). Agents 4, . . . , n have the same
reward function as agent 3. There are L− 1 copies of s′l and s′r, each connected to the other states the
same way sl and sr are connected (and with the same initial rewards). The initial state distribution
has probability 0.25/L on each of s′l and s′r as well as each of their copies, and 0.25 on each of sl
and sr. The target policy is highlighted in red: π?(s′l) = a, π?(sl) = c, π?(sr) = f , and π?(s′r) = h
(and the same for the corresponding copies).

Next, we first show that δ1(c) ≥ 1
1−γ − ε and δ1(f) ≥ 1

1−γ − ε. Since δ incentivizes agent 1 to take
action c instead of d, we have Qπ

?

1 (sl, c | δ1) ≥ Qπ?1 (sl, d | δ1) + ε, expanding which gives

1

1− γ
· (δ1(c)− 1) ≥ −ε+

γ

1− γ
· δ1(f) + ε,

or
δ1(c) ≥ γ · δ1(f) + 1. (27)

Since δ is EF, agent 1 cannot be better off with the following policy π and δ2: π(sl) = d and
π(s) = π?(s) for all other s. Namely, ρπ1 (δ2) ≤ ρπ?1 (δ1), or

(δ2(a) + ε)

V π1 (sl|δ2)︷ ︸︸ ︷
−ε+

γ

1− γ
· δ2(f) +

1

1− γ
· δ2(f) + (δ2(h) + ε)

≤ (δ1(a) + ε) +
1

1− γ
· (δ1(c)− 1) +

1

1− γ
· δ1(f) + (δ1(h) + ε),

where we omit the initial probability 0.25 as the coefficients on both sides of the equation. Applying
(26), we can reduce the above equation to

1 + γ · δ1(c)− (1− γ) · ε ≤ δ1(f).

Combining (27) with the above equation gives

δ1(f) ≥ γ2 · δ1(f) + γ + 1− (1− γ) · ε,

=⇒ δ1(f) ≥ 1

1− γ
− ε

1 + γ
≥ 1

1− γ
− ε;

and δ1(c) ≥ γ · δ1(f) + 1 ≥ 1

1− γ
− ε.

The remainder of the proof is then similar to the proof of Lemma C.1 (where we had δ1(c) ≥ 1 but
now δ1(c) ≥ 1

1−γ − ε). We analyze the following three cases.

Case 1: δ3(c) ≥ λ/2. Since δ3 incentivizes agent 3 to use the target policy π?, we have
Qπ

?

3 (s′l, a) ≥ Qπ?3 (s′l, b) + ε, or equivalently,

δ3(a) + ε ≥ δ3(b) +
γ

1− γ
· δ3(c) + ε.
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Since δ3 is non-negative and by assumption δ3(c) ≥ λ/2 in this case, we get that δ3(a) ≥ λ
2 ·

γ
1−γ .

By symmetry this also holds for all copies of action a. It follows that

‖δ3‖ ≥
√
L · λ

2
· γ

1− γ
= Ω(λ2

√
m).

Case 2: δ3(f) ≥ λ/2. Applying the same arguments for Case 1 gives ‖δ3‖ = Ω(λ2
√
m) in this

case.

Case 3: δ3(c) ≤ λ/2 and δ3(f) ≤ λ/2. We have shown that δ1(c) ≥ 1
1−γ−ε and δ1(f) ≥ 1

1−γ−ε.
By WEF, we have ρπ

?

3 (δ3) ≥ ρπ?3 (δ1), which means

(δ3(a) + ε) +
1

1− γ
· δ3(c) +

1

1− γ
· δ3(f) + (δ3(h) + ε)

≥ (δ1(a) + ε) +
1

1− γ
· δ1(c) +

1

1− γ
· δ1(f) + (δ1(h) + ε) .

Rearranging the terms and using non-negativity and the facts that δ1(c) ≥ 1
1−γ − ε and δ1(f) ≥

1
1−γ − ε, as well as the assumption that δ3(c) ≤ λ/2 and δ3(f) ≤ λ/2 in this case, we get that

δ3(a) + δ3(h) ≥
(

1

1− γ

)2

− 2ε

1− γ
= λ2 − 2ε · λ.

It follows that

‖δ3‖ ≥
√
L · (δ3(a) + δ3(h))2

2
= Ω(λ2

√
m).

Therefore, in all cases, ‖δ3‖ = Ω(λ2 ·
√
m). Since δ3 = · · · = δn, we have cost(δ) ≥

∑n
i=3 ‖δi‖ =

Ω(λ2 · n ·
√
m), which completes the proof.

Lemma C.4. PoSEF(n,m, λ) = O(λ2 · n ·
√
m) when the scheme is required to be non-negative

and all the agents have the same discount factor.

Proof. Let γ1 = · · · = γn = γ. Suppose that without the fairness constraints, the minimum costs for
teaching π? is Ci for each agent i ∈ [n]; let δ̂i be the adjustment achieving this minimum cost for
each i ∈ [n], and let δ̂ =

(
δ̂i

)
i∈[n]

. Since the schemes are non-negative, we have 0 ≤ δ̂i(s, a) ≤ Ci
for all i, s, and a.

Now consider SEF and the following adjustment scheme (similar to (17)), where we let H =
1

1−γ maxi∈[n] Ci and ST be the set of terminal states.

δi(s, a) =

{
H + γ

1−γ ·H ·
∑
s′∈ST P (s, a, s′), if a = π?(s)

0, otherwise
(28)

As defined above, δ is non-negative, and δi is identical for all i ∈ [n], so δ is SEF. Moreover, we have
0 ≤ δi(s, a) ≤ 1

1−γ ·H for all i, s, and a. Hence,

cost(δ)

cost
(
δ̂
) ≤ ∑

i∈[n] ‖δi‖

maxi∈[n]

∥∥∥δ̂i∥∥∥ ≤
n · λ ·H ·

√
|S| · |A|

maxi∈[n] Ci
= O

(
λ2 · n ·

√
m
)
.

It remains to argue that δ is also feasible.

Consider an arbitrary agent i. We first argue that

V π
?

i (s | δi) = V π
?

i (s | 0) +
1

1− γ
·H (29)

for all s ∈ S \ ST, where V π
?

i (s | 0) denotes the original value function when no adjustment is
provided. Indeed, since the V-function is additive for two reward functions, it suffices to argue that
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in a process where the δi is the reward function, the corresponding V-values are 1
1−γ ·H for every

s ∈ S \ ST. This can be verified via the Bellman equation: The V-values are 0 for all the terminal
states, whereas for the non-terminal states, the term γ

1−γ ·H ·
∑
s′∈ST P (s, a, s′) makes it as if the

process continues forever with a reward H generated in every subsequent step, whereby the V-values
are exactly 1

1−γ ·H . Hence, (29) then follows.

Next consider δ̂, we have

V π
?

i

(
s
∣∣∣ δ̂i) = V π

?

i (s) + E

[ ∞∑
t=0

(γi)
t · δ̂i(st, π?(st))

∣∣∣∣∣ s0 ∼ z, π?

]
.

Hence,

V π
?

i (s | 0) ≤ V π
?

i

(
s
∣∣∣ δ̂i) ≤ V π?i (s | 0) +

1

1− γ
· C, (30)

where we let C = maxi∈[n] Ci. The first inequality follows by the non-negativity of δ̂, and the second
follows by the fact that δ̂i(s, a) ≤ Ci ≤ C for all i, s, and a.

Compare the differences in the Q-values when δ̂ and δ are applied. We have

Qπ
?

i (s, π?(s) | δi)−Qπ
?

i

(
s, π?(s)

∣∣∣ δ̂i)
= δi(s, π

?(s))− δ̂i(s, π?(s)) + γ · Ex∼P (s,π?(s),·)

(
V π

?

i (x | δi)− V π
?

i

(
x
∣∣∣ δ̂i))

= δi(s, π
?(s))− δ̂i(s, π?(s)) + γ ·

∑
x∈S\ST

P (s, π?(s), x) ·
(
V π

?

i (x | δi)− V π
?

i

(
x
∣∣∣ δ̂i))

+ γ ·
∑
x∈ST

P (s, π?(s), x) ·
(
V π

?

i (x | δi)− V π
?

i

(
x
∣∣∣ δ̂i))

= H − δ̂i(s, π?(s)) + γ ·
∑

x∈S\ST

P (s, π?(s), x) ·
(
V π

?

i (x | δi)− V π
?

i

(
x
∣∣∣ δ̂i))

+ γ ·
∑
x∈ST

P (s, π?(s), x) ·
(

1

1− γ
·H + V π

?

i (x | δi)− V π
?

i

(
x
∣∣∣ δ̂i)) ,

where the last equality follows by replacing δi(s, π?(s)) according to (28). Note that for all terminal
states x ∈ ST, we have V π

?

i (x | δi) = V π
?

i

(
x
∣∣∣ δ̂i) = 0. Moreover, using (29) and (30), we have

V π
?

i (x | δi)− V π
?

i

(
x
∣∣∣ δ̂i) ≥ 1

1−γ · (H − C). Hence, the above equation continues as:

Qπ
?

i (s, π?(s) | δi)−Qπ
?

i

(
s, π?(s)

∣∣∣ δ̂i)
≥ H − δ̂i(s, π?(s)) + γ

∑
x∈S\ST

P (s, π?(s), x) · 1

1− γ
· (H − C) + γ

∑
x∈ST

P (s, π?(s), x) · 1

1− γ
·H

≥ H − C +
γ ·H
1− γ

− γ · C
1− γ

≥ γ

1− γ
·H.

Next, we consider actions a 6= π?(s).

Qπ
?

i (s, a | δi)−Qπ
?

i

(
s, a

∣∣∣ δ̂i) = δi(s, a)− δ̂i(s, a) + γ · Ex∼P (s,a,·)

(
V π

?

i (x | δi)− V π
?

i

(
x
∣∣∣ δ̂i))

≤ γ · Ex∼P (s,a,·)

(
V π

?

i (x | δi)− V π
?

i

(
x
∣∣∣ δ̂i))

≤ γ

1− γ
·H,
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where the last transition follows by (28) and (30).

Combining the above two equations gives

Qπ
?

i (s, π?(s) | δi)−Qπ
?

i (s, a | δi) ≥ Qπ
?

i

(
s, π?(s)

∣∣∣ δ̂i)−Qπ?i (
s, a

∣∣∣ δ̂i)
for any s ∈ S and a 6= π?(s). Indeed, since δ̂ is feasible, by definition we have

Qπ
?

i

(
s, π?(s)

∣∣∣ δ̂i) ≥ Qπ?i (
s, a

∣∣∣ δ̂i)+ ε.

It then follows that
Qπ

?

i (s, π?(s) | δi)−Qπ
?

i (s, a | δi) ≥ ε
for all a 6= π?(s). Since the choice of i is arbitrary, δ is feasible.

Summarizing the above two lemmas, we get the following result.
Theorem 6.2. When the scheme is required to be non-negative and all the agents have the same
discount factor, it holds that PoWEF(n,m, λ) = Θ(λ ·n ·

√
m), PoEF(n,m, λ) = Θ(λ2 ·n ·

√
m),

and PoSEF(n,m, λ) = Θ(λ2 · n ·
√
m).

Proof. Lemmas C.1 and C.2 establish the bound of the PoWEF.

Since SEF is a stronger requirement than EF, Lemmas C.3 and C.4 establish the bounds of the PoEF
and PoSEF.
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